

Lambda Agitator Impellers

Agitator Shaft (Type : S-3) Solid Shaft

Approx. I (m	Dimension m)	Part Number	Approx. Total Weight
D2	L		(kg)
	250	S3x012A-R0250	0.23
	300	S3x012A-R0300	0.28
	350	S3x012A-R0350	0.32
12	400	S3x012A-R0400	0.37
	450	S3x012A-R0450	0.41
	500	S3x012A-R0500	0.46
	250	S3x016A-R0250	0.41
	300	S3x016A-R0300	0.49
	350	S3x016A-R0350	0.57
16	400	S3x016A-R0400	0.65
10	450	S3x016A-R0450	0.73
	500	S3x016A-R0500	0.81
	450	S3x019A-R0450	1.03
	500	S3x019A-R0500	1.14
	550	S3x019A-R0550	1.25
19	600	S3x019A-R0600	1.37
	650	S3x019A-R0650	1.48
	750	S3x019A-R0750	1.71
	500	S3x025A-R0500	1.97
	550	S3x025A-R0550	2.16
	600	S3x025A-R0600	2.36
	650	S3x025A-R0650	2.56
	750	S3x025A-R0750	2.95
	950	S3x025A-R0950	3.74
25	1,000	S3x025A-R1000	3.93
	1,100	S3x025A-R1100	4.32
	1,250	S3x025A-R1250	4.91
	750	S3x032A-R0750	4.83
	800	S3x032A-R0800	5.15
	900	S3x032A-R0900	5.80
	950	S3x032A-R0950	6.12
	1,000	S3x032A-R1000	6.44
	1,100	S3x032A-R1100	7.08
32	1,250	S3x032A-R1250	8.05
	1,350	S3x032A-R1350	8.69
	1,500	S3x032A-R1500	9.66

Agitator Coupling

Type : C-1

SUS 304

SUS 316

A	pprox. Dime	ension (mm	.)	Davt Number	Part Number		
D1	D2	D3	L	Part Number	Part Number		
11	12	20	46	C1T011A-xxx04	C1U011A-xxx04		
14	16	25	60	C1T014A-xxx05	C1U014A-xxx05		
19	19	32	80	C1T019A-xxx06	C1U019A-xxx06		
20	19	32	80	C1T020A-xxx08	C1U020A-xxx08		
24	25	38	100	C1T024A-xxx08	C1U024A-xxx08		
25	25	38	100	C1T025A-xxx08	C1U025A-xxx08		
28	25	44	120	C1T028A-xxx08	C1U028A-xxx08		
30	32	44	120	C1T030A-xxx08	C1U030A-xxx08		
35	35	50	140	C1T035A-xxx10	C1U035A-xxx10		
38	38	55	160	C1T038A-xxx10	C1U038A-xxx10		
40	38	55	160	C1T040A-xxx12	C1U040A-xxx12		
42	44	60	180	C1T042A-xxx12	C1U042A-xxx12		
45	44	60	180	C1T045A-xxx14	C1U045A-xxx14		
48	50	75	200	C1T048A-xxx14	C1U048A-xxx14		
50	57	75	200	C1T050A-xxx14	C1U050A-xxx14		
60	63	80	240	C1T060A-xxx18	C1U060A-xxx18		
70	69	90	280	C1T070A-xxx20	C1U070A-xxx20		
80	76	110	320	C1T080A-xxx22	C1U080A-xxx22		
90	89 120 360		360	C1T090A-xxx25	C1U090A-xxx25		

Type:C-4

		Approx	. Dimens	De et Nicercherer	De ut Nieure le eur			
D1	D2	D3	D4	L	Фe	n	Part Number	Part Number
20	19	60	80	80	9	4	C4T020A-xxx06	C4U020A-xxx06
25	25	67	90	100	11	4	C4T025A-xxx08	C4U025A-xxx08
30	32	72	95	120	11	4	C4T030A-xxx08	C4U030A-xxx08
35	35	82	105	140	11	4	C4T035A-xxx10	C4U035A-xxx10
40	38	87	110	160	11	6	C4T040A-xxx12	C4U040A-xxx12
45	44	92	115	180	11	6	C4T045A-xxx14	C4U045A-xxx14
50	57	97	120	200	11	6	C4T050A-xxx14	C4U050A-xxx14
60	63	115	140	240	13	6	C4T060A-xxx18	C4U060A-xxx18
70	69	125	150	280	13	6	C4T070A-xxx20	C4U070A-xxx20
80	76	140	165	340	13	6	C4T080A-xxx22	C4U080A-xxx22
90	89	150	175	340	13	8	C4T090A-xxx25	C4U090A-xxx25
100	100	160	185	420	13	8	C4T100A-xxx25	C4U100A-xxx25
110	100	170	195	420	13	8	C4T110A-xxx28	C4U110A-xxx28
120	100	185	210	420	13	8	C4T120A-xxx32	C4U120A-xxx32

Agitator Accessories

1. Direct Drive Motor

) lambda

Special design for agitator

			Des	cription					
Part Number		Motor			Shaft Dia.	Flar	ige Di	mensi	on
	Power Supply	Нр	kW	Speed (rpm)	(mm.) D1	D4	Umr D5	n.) øe	n
MGS005B-D1500	1 Ph/ 220V./ 50Hz IP55, 4 Pole	0.50	0.37	1,500	19	130	160	M10	4
MGT005B-D1500	3 Ph/ 380V./ 50Hz IP55, 4 Pole	0.50	0.37	1,500	19	130	160	M10	4
MGT002B-D1000		0.25	0.18		19	130	160	M10	
MGT005B-D1000	3 Ph/ 380V./ 50Hz	0.50	0.37	1,000	24	165	200	M12	4
MGT010B-D1000	1 35,01010	1.00	0.75		28	165	200	M12	
MGT002A-D0600	3 Ph/ 380V./ 50Hz	0.25	0.18	600	24	165	200	M12	4
MGT003A-D0600	IP55, 10 Pole	0.33	0.25	000	24	105	200	10112	4
MGT002B-D1000	3 Ph/ 380V./ 50Hz IP55, 12 Pole	0.20	0.15	500	24	165	200	M12	4

2. Geared Drive Motor 3 Phase., 380 V, 50Hz

Helical Geared motor "SEW" made in west Germany

					D	escript	ion			
Part Number	Mo	otor	Output Speed	Flar	ige D (mi	imens m.)	ion	Shaft Dia. (mm.)	SF	Output Torque
	Нр	kW	(rpm)	D4	D5	øe	n	D1	3.11	(Nm.)
MGT001A-G0306	0.16	0.12	102	100	120	65	Л	20	13	3.7
MGT001A-G0100	0.10	0.12	306	100	120	0.5	4	20	7.4	12
MGT002A-G0293	0.24	500	100	100	120	65	Л	20	8.1	5.9
MGT002A-G0102	0.24	500	293	100	120	0.5	4	20	5	17
MGT003A-G0288	0.33	0.25	288	100	120	6.5	4	20	5.8	4.3
MGT003A-G0306	0.50	037	306	100	120	6.5	4	20	4.2	12
MGT003A-G0100	0.50	0.57	100	100	120	6.5	4	20	2.4	35
MGT010A-G0276	1 00	0.75	276	130	160	8.5	4	25	2.7	26
MGT010A-G0104	1.00	0.75	104	130	160	8.5	4	25	2.8	69
MGT020A-G0252	2.00	1.50	252	130	160	8.5	4	25	1.75	57
MGT030A-G0291	3.00	2.20	291	165	200	11.0	4	30	2.1	72
MGT040A-G0240	4.00	3.00	240	215	250	13.5	4	35	2.7	119
MGH055A-G0249	5.50	4.00	249	215	250	13.5	4	35	2	153
MGH075A-G0251	7.50	5.50	251	215	250	13.5	4	35	1.5	210
MGH100A-G0239	10.00	7.50	239	265	300	13.5	4	40	1.8	300
MGH150A-G0225	12.25	9.20	225	300	350	17.5	4	50	2.6	390
MGH122A-G0225	15.00	11.00	225	300	350	17.5	4	50	2.2	465
MGH200A-G0229	20.00	15.00	229	300	350	17.5	4	50	1.65	625

Øexn

Geared Drive Agitator

200-300 rpm, 380 V, 3 Phase., 50 Hz, IP55

	Geared Motor										Shaft		Im	peller	Maximum	
Pov	wer	Speed	Flang	je dime	ension	(mm.)	Coupling			Dimer	nsion (m	nm.)		Type/ no.of	Diameter (mm)	Agitation
kW	Нр	(rpm)	D4	D5	е	n		D2	F	S	CV	С	L	stage	D	(Ltr.)
									-	-	550	70	450			100
0.16	0.12	306	100	120	6.5	4	C-1 20-19		-	-	650	70	550	Δ1_2/1	150	200
									-	-	850	170	750			300
0.25	0.18	293	100	120	6.5		C-4 20-19		-	-	850	110	750		200	500
0.05	0.37	276							-	-	1250	230	1200		250	1,000
0.75	0.55	276	130	160	8.5		C-4 25-25	25	-	-	1200	170	1200	Δ2_3/1	300	1,500
1	0.75	287							-	-	1300	440	1300	AZ-3/ I	300	2,000
1.5	1.1	291	165	200	11		C-4 30-32	32	-	-	1365	340	1650		300	2,500
2	1.5	255				4		38	-	1500	1500	450	2000		300	4,000
3	2.2	214	-	-	-		Skirt	50	-	700	1800	330	2500	A2 2/2	400	6,000
3	2.2	254	_	_	-		JAIL	50	-	600	1700	530	2300		370	6,000
4	3	218						63	-	650	2200	830	2850		450	10,000

100 rpm, 380 V, 3 Phase., 50 Hz, IP55

	Geared Motor									(Shaft			Imp	peller	Maximum
Po	wer	Speed	Flang	ge dim	ension	(mm.)	Coupling			Dimer	nsion (m	nm.)		Type/ No. of	Diameter (mm)	Agitation capacity
Нр	kW	(rpm)	D4	D5	е	n		D2	F	S	CV	С	L	Stage	D	(Ltr.)
							C 1 20 10			-	550	70	450		200	100
0.16	0.12	100	100	120	C.F.	4	C-120-19	10	-	-	650	70	550	A1-2/1	200	200
0.16	0.12	100	100	120	0.5		4 C-4 20-19			-	850	170	750	/// 2/1	250	300
							C-4 20-19		-	-	850	110	750		300	500
0.25	0.18	102	100	120	65		C 4 20 10	10	_	-	1200	1277	1200		350	1,000
0.33	0.25	100	100	120	0.5		C-4 20-19	19		-	1200	1167	1200	A1-4/1	450	1,500
0.5	0.37	104	125	160	85		C 4 25 25	25	_	-	1500	240	1450		500	2,000
0.5	0.57	104	135	100	0.5	4	C-4 25-25	25		600	1100	290	1650		400	2,500
1	0.75	114	165	200	11	11 4	C 4 20 21	22	-	700	1400	350	2100	A1-2/2	450	4,000
1.5	1.1	112	105	200			C-4 30-32	32	-	600	1800	430	2400		550	6,000
2	1.5	108	250	300	14		Skirt	45	-	900	2300	480	3200		600	10,000

Direct Drive Agitator

Specification

- shaft, impeller and coupling are available in SUS304 or SS316 material
- output shaft of agitator motor is made from S45C steel or higher strength upon request
- over-sized output shaft and bearing get more stiffness with higher critical speed than the standard motor
- copper wire insulated is class H insulation (200 °C)

Features

- motor is constructed for mechanical simplicity with maximum structural integrity
- elimination of gear, belt and reduces periodic maintenance requirements
- reliable and dynamically balanced to virtually eliminate vibration

1,500 rpm, 220 V, 1 Phase., 50 Hz, IP55

		Mo	otor					Shaft					Impe	ller	Max.
Ρο	wer	Speed	Flang	ge Dii (mr	men: n)	sion	Coupling		Dime	ensio	n (mr	n)	Type/ No.of	Dia (mm)	Agitation Capacity
Нр	kW	(rpm)	D4	D5	е	n	couping	D2	F	CV	С	L	Stage	D	(Ltr.)
										350	170	450			100
										450	170	550			200
0.5	0.37	1,500	130	160	10	4	C-1 19-19	19	100	650	270	750	A2- 3A / 1	125	300
										650	210	750			500
									200	800	430	1,000			1,000
1.5	1.1		165	200	10	4	C-1 24-25	25	-	-	-	1,100	P3-3 / 1	200	1,500

1,500 rpm, 380 V, 3 Phase., 50 Hz, IP55

		Мс	otor					Shaft					Impeller		Max.
Ρο	wer	Speed	Flan	ge Di (mr	men n)	sion	Coupling		Dime	ensio	n (m	m)	Type/ No.of	Dia (mm)	Agitation Capacity
Нр	kW	(rpm)	D4	D5	е	n		D2	F	CV	С	L	Stage	D	(Ltr.)
										350	170	450			100
										450	170	550			200
0.5	0.37	1,500	130	160	10	4	C-1 19-19	19	100	650	270	750	A2-3/1	125	300
										650	210	750			500
									200	800	430	1,000			1,000
1.5	1.1		165	200	10	4	C-1 24-25	25	-	-	-	1,100	P3-3 / 1	200	1,500

1,000 rpm, 380 V, 3 Phase., 50 Hz, IP55

		Мс	otor					Shaft					Impe	ller	Max.
Po	wer	Speed	Flan	ge Di (mr	men n)	sion	Coupling		Dim	ensio	t n (mr	n)	Type/ No.of	Dia (mm)	Agitation Capacity
Нр	kW	(rpm)	D4	D5	е	n		D2	F	CV	С	L	Stage	D	(Ltr.)
										350	170	450			100
										450	170	550		150	200
0.5	0.37	1,000	165	200	10	4	C-1 24-25	25	100	650	270	750	P3-3/1		300
										650	210	750		175	500
									200	800	430	1,000		175	1,000
1.5	1.1		0.65	200	10	4	C-1 24-25	25	-	-	-	1,100		200	1,500

750 rpm, 380 V, 3 Phase., 50 Hz, IP55

		Мо	tor					Shaft					Impe	ller	Max.
Pov	wer	Speed	Flang	ge Di (mn	men n)	sion	Coupling		Dim	ensio	t n (mr	n)	Type/ No.of	Dia (mm)	Agitation Capacity
Нр	kW	(rpm)	D4	D5	е	n		D2	F	CV	С	L	Stage	D	(Ltr.)
										350	170	450			100
										450	170	550		150	200
0.5	0.37	1,000	165	200	10	4	C-1 24-25	25	100	650	270	750	P3-3/1		300
										650	210	750		175	500
									200	800	430	1,000		175	1,000
1	0.75		0.65	200	10	4	C-1 24-25	25	-	-	-	1,100		200	1,500

Static Mixer

A static mixer is a device, usually metal or plastic fixed to a pipe or tube. As the fluid flows through this section, it is continuously divided, reoriented, sheared and stretched by the helical right-and left-hand elements producing new interfacial element that are subsequently recombined. Through the action of the static mixer, fluid at the center of the flow field can be directed towards the walls while material at the walls is sent to the center. This produces a distributive mixing of the fluid components in a radial direction. It can produce a homogeneous blend of dispersion in laminar, transitional or turbulent flow within a very short pipe length. It is widely used in the process industry for a large variety of mixing applications.

Mixing Principle

A "static mixer" often called an inline mixer, is a device used frequently in water treatment to create an injection point for chemicals like chlorine and soda ash into a water line. Its purpose is to create turbulence that enhances the rapid mixing of the injected chemical into the water stream. Use of the static mixer can reduce the necessary size of storage tanks following the injection point.

The picture above is a cutaway made to expose the inner workings of the mixer. It's a simple device. The service flow of the water is from left to right in the picture. The chemical is injected through the threaded pipe extension on the left of the mixer body. As water passes through the mixer, it is churned by the metal baffles seen in the picture and the chemical is mixed with the water.

Flow is divided equally passing each element and number of divisions increases in a geometrical progression as the number of elements increase.

The partition number N = 2, (where n is the number of elements.)

Features and Benefits

- No moving parts and no contamination
- Low capital cost and maintenance
- Easy to install as standard
- Long service life and low power requirements
- No need for tanks in most cases
- Minimal space requirement
- Improved performance of the injected chemicals.

The Minimum Number of Elements

Reynolds number should be determined to specify the required number of elements. The Reynolds number can be calculated namely ;

$$Re = \frac{D_P \rho_L V_S}{\mu}$$

Where:

 $D_p =$ Pipe diameter (m) $\rho_L =$ Mass density of water (kg/m³)

Vs = Water Velocity (m/s)

 $\mu = \text{Viscosity} (\text{kg/m-sec})$

Flow Regime	Reynold's Number (Re)	No. Of Elements
Laminar	<1 1-10 11-50 51-100 101-500	24 18 14 12 10
Transitional	501-1,000 1,001-2,000	8 6
Turbulent	2,001-50,000 50,001+	4 2

Material of Construction

- stainless steel 304 & 316L
- PP, PVC and PE
- Carbon steel

End Connection

Pressure Drop Number of Element

Calculate Pressure Drop, ΔP

Pressure Drop Per Element (PSI)

Where : $\Delta P = Pressure Drop (kg/cm^2) or (bar)$ f SM = Friction Lambda static mixer (from table)

$$\Delta P = 3.061 \times 10^{-6} \times f_{NSM} \rho(\overline{u})^2 E$$

f SM<0.1; **fSM** = $\frac{16}{Re.NO} \times 6$ ρ = Liquid density (g/cm³) \overline{u} = Liquid velocity (cm/s) **E** = Element

PRESSURE DROP PER ELEMENT VERSUS FLOWRATE For 1" through 12" Diameter Static Mixers

Flowrate (GPM)

Mixer Velocity

Calculate Speed, V

$$V = \frac{Q}{A}$$
Where : $V = Velocity (m/s)$ $Q = Flow rate (m^3/hr)$ $A = Area (m^2)$

FRICTION FACTORS FOR CLEAN COMMERCIAL STEEL AND WROUGHT IRON PIPE

Viscosity and Density of Liquids

- 1. $\mu = Dynamic Viscosity (N-s/m^2)$
- 2. v = Kinetic Viscosity (m²/s)

$$v = rac{\mu}{
ho}$$

Material	T (°C)	μ (Pa.s)	p (kg/m³)
Liquids Water	0	1.79 × 10 ⁻³	999
Water	20	1.00×10^{-3}	998
Water	40	0.664 × 10 ⁻³	992
Water	60	0.466 × 10 ⁻³	983
Water	80	0.355 × 10 ⁻³	972
Water	100	0.281 × 10 ⁻³	958
Ethanol	20	1.20 × 10 ⁻³	790
Gycerol	20	1.490	1261
Edible oils	20	0.05-0.2	920-950
Edible oils	100	5-2 × 10 ⁻³	880-900
Milk	20	2 × 10 ⁻³	1032
Milk	70	0.7 × 10 ⁻³	1012
Beer	0	1.3 × 10 ⁻³	1000
Honey	25	б	1400

Water

Temperature (deg °C)

Head Loss in Static mixer

Darcy – Weisbach Equation

Where :

$$h_f = f \frac{Lv^2}{D2g}$$

f = coefficient of friction (Darcy – Weisbsch)
L = length of static mixer (m)
D = diameter of pipe (m)
V = velocity in the pipe (m/s)
G = acceleration due to gravity (9.81 m/s²)

For smooth pipe Reynolds number would give the following relationships between f and Re

$$f = 0.048(R_e)^{-0.20} \qquad 10^4 < R_e < 10^6$$
$$f = 0.193(R_e)^{-0.35} \qquad 3 \times 10^3 < R_e < 10^4$$

The required number of elements can also be approximated via different kinds of mixing namely ;

Number of Elements	Applications
1 - 4	- Mixing of gas low viscous fluids
4 - 6	- Mixing of low viscous fluids - Homogenization of high viscous fluids - Uniformization of temperature
6 - 12	- Gas - liquid contraction - Blending of heavy oils - Alkali washing - Aeration
12 - 18	- Mixing of medium viscous fluids - Extraction / emulsification
18 - 24	- Mixing of high viscous fluids - Mixing of two component resins / adhesives
>24	- Heat exchange / reactor - Specific purposes

InLine Static Mixer

Ordering Information

4 Elements

Dart Number	Nominal Size		Approx. Dimensions (mm)							
Part Number	mm.	Inch	D3	D4	D5	L	Т	n	øe	
SMV020A-V004G	20	3/4	27	75	100	130	14	4	15	
SMV025A-V004G	25	1	33	90	125	165	14	4	19	
SMV040A-V004G	40	1-1/2	48	105	140	250	16	4	19	
SMV050A-V004G	50	2	60	120	155	325	16	4	19	
SMV065A-V004G	65	2-1/2	73	140	175	395	16	4	19	
SMV080A-V004G	80	3	89	150	185	490	18	8	19	
SMV100A-V004G	100	4	114	175	210	635	18	8	19	
SMV150A-V004G	150	6	168	240	280	955	21	8	23	
SMV200A-V004G	200	8	219	290	330	1,250	21	12	23	

6 Elements

Part Number	Nominal Size		Approx. Dimensions (mm)						
Fait Number	mm.	Inch	D3	D4	D5	L	Т	n	øe
SMV020A-V006G	20	3/4	27	75	100	185	14	4	15
SMV025A-V006G	25	1	33	90	125	235	14	4	19
SMV040A-V006G	40	1-1/2	48	105	140	365	16	4	19
SMV050A-V006G	50	2	60	120	155	475	16	4	19
SMV065A-V006G	65	2 - 1/2	73	140	175	580	16	4	19
SMV080A-V006G	80	3	89	150	185	720	18	8	19
SMV100A-V006G	100	4	114	175	210	940	18	8	19
SMV150A-V006G	150	6	168	240	280	1,415	21	8	23
SMV200A-V006G	200	8	219	290	330	1,855	21	12	23

8 Elements

Part Number	Nominal Size		Approx. Dimensions (mm)							
Farthumper	mm.	Inch	D3	D4	D5	L	Т	n	øe	
SMV020A-V008G	20	3/4	27	75	100	240	14	4	15	
SMV025A-V008G	25	1	33	90	125	305	14	4	19	
SMV040A-V008G	40	1-1/2	48	105	140	480	16	4	19	
SMV050A-V008G	50	2	60	120	155	625	16	4	19	
SMV065A-V008G	65	2-1/2	73	140	175	765	16	4	19	
SMV080A-V008G	80	3	89	150	185	955	18	8	19	
SMV100A-V008G	100	4	114	175	210	1,245	18	8	19	
SMV150A-V008G	150	6	168	240	280	1,875	21	8	23	
SMV200A-V008G	200	8	219	290	330	2,460	21	12	23	

Submersible Mixer

Product description

Lambda Submersible mixers are mainly used for the purpose of mixing, agitating and making ring flows in the process of municipal and industrial sewage treatment and can also be used as a maintenance equipment for the landscape water environment through agitation. It can achieve the function of creating water flow, improving the quality of the water body, increasing the oxygen content in the water and effectively preventing the sedimentation of the suspended substances.

Lambda submersible mixers can also improve the growth rate of agriculture and promote higher quality of marine products. Recirculating systems can be created by this equipment designed especially for high water flow efficientcy. It is a key equipment used in water treatment technology, can meet the technoligical requirement on the homogeneity of the two-phase solid-liquid and three-phase solid-liquid-gas flow and the fluidity in the bio-chemical processes in the flow path of the water treatment technology. The schematic drawing of the structure is shown as follows.

Specification

- Submersible mixer with frame and polyethylene float
- Mixer : LSMF Series as per customers requirement
- Float : PE with PU foam filled, float type PIN140A
- Frame: approx. dimension 150cm(L) x 205cm(W) x 136cm(H)
- Submersible mixer with install guide system
- Mixer : LSM Series as per customers requirement

Submersible Mixer

Information for Model Selection

The model selection of the submersible mixer is a rather complicated job. The correctness of the scheme selection will directly affect the normal usage of the equipment. The principle for the model is to enable the mixer to give full play to its mixing function in the appropriate volume. This standard can generally be determined with the use of the flow velocity. In line with the different technological requirement of the sewage treatment, the optimum flow velocity for the mixer model selection shall ensure the velocity range of 0.15~0.3m/s. In case of the flow velocity lower than 0.15m/s, the effect of agitation or mixing cannot be achieved. In case of the flow velocity more greater than 0.3m/s, the technological result will be affected and waste will be caused. Therefore, first of all, it is necessary to determine what kind of locations the mixer will be used in, for instance, sewage tank, slag pond or bio-chemical pond. Secondly, the parameters of the media such as content of the suspended substances, temperature, PH value as well as the shape of the pond, water depth and even the mode of installation and so on will all influence the model selection. Meanwhile, it is also necessary to consider the energy-saving factor, because this will affect the operation cost of the user in the future. Reference can be made to the diagrams of the flow field of the submersible mixer. For the purpose of obtaining the optimum mixing function under the different environments, we can supply a multiple of models of the submersible mixers to the users and provide the model selection service.

Diagrams of the Flow Field of Submersible Mixer

The flow velocity fields are located in the clear water with the boundary water flow velocity V=0.1m/s.S

LSM-0.85/8, LSM1.5/6, LSM1.5/8

LSM-2.2/8, LSM4/6-320, LSM2.5/8, LSM3/8, LSM4/6-400

LSM-4/12, LSM5/12

LSM-7.5/12, LSM10/12

Installation Modes and Dimensions

The submersible mixers can be installed in a multiple of modes. Here are four generally accepted modes of installation for selection with reference made to the following table.

Model	а	D	b	L	h1min	h2min	Installation System
LSM-0.85	Ø48	360	330	630	500	110	I-1, I-2
LSM-1.5/6	Ø48	360	330	630	500	110	I-1, I-2
LSM-2.2/8	Ø70	460	320	970	800	150	I
LSM-4/6	Ø70	460	320	970	800	150	=
LSM-1.5/8	Ø70	530	320	960	500	200	I
LSM-2.5/8	Ø70	530	320	960	500	200	=
LSM-3/8	Ø70	530	320	1010	800	200	=
LSM-4/6	Ø70	530	320	1010	800	300	=
LSM-4/12	Ø100	820	335	1150	1100	300	Ξ
LSM-5/12	Ø100	620	335	1150	1100	300	=
LSM-7.5/12	Ø100	820	335	1280	1500	300	Ш
LSM-10/12	Ø100	820	335	1280	1500	300	Ш

Installation System

Submersible Mixer

NOTE:

- 1. The special installation systems for the submersible mixer can facilitate the guick installation and dismantling of the submersible mixer under the conditions of no need for draining off sewage from the pond.
- 2. Installation System I-1 is only suitable for the ponSd depth <4m and the mixer models of LSM0.85/8 and LSM1.5/6 and with possibility of adjusting the angles in both the horizontal and longitudinal directions. With the depth >4m3, the installation system I-2 shall be chosen.
- 3. For Installation System II and III, the guide rod can rotate round the axial line of the guide along the horizontal direction with the maximum angle of rotation $\pm 6^{\circ}$.
- 4. With H>4m, it is necessary to add a supporting frame between the guide rods.
- 5. The supporting frame and the lower support shall be fixed onto the pond and the pond bottom with the use of the expansion bolts or chemical anchors; any pre-prepared holes can be dispersed with.
- 6. While placing an order by customer, please supply the pond depth H and the drawing of the pond shape so as to determine the dimensions of the guide rod and the number of the support frames.
- 7. The installation systems may empty the material of the stainless steel or carbon steel for the selection of the corrosion resisting properties.
- 8. A multiple of mixers can share on lifting system.

Operating modes

The installation and positioning of the submersible mixers will produce a great impact on the effect of mixing. In order to obtain the double operating result with the half effort, it is suggested that the advice of the specialized designers shall be followed and full consideration given to the shape of the pond, position of the water inlet and outlet, the vortex resulting from the outflow from the mixer onto the structures and some other conditions. Every effort shall be made to reduce the short-circuit circulation and the occurrence of dead corners and avoid the dashing of the flow against the pond wall for lowering the flow velocity. Making reference to the diagrams of operatingmodes below will help you to make a reasonable selection of the mixers and their installation modes.

Mixing and agitating series

